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Orientational order in dipolar fluids consisting of nonspherical hard particles

B. Groh and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Federal Republic of Germany

~Received 3 September 1996!

We investigate fluids of dipolar hard particles by a certain variant of density-functional theory. The proper
treatment of the long range of the dipolar interactions yields a contribution to the free energy which favors
ferromagnetic order. This corrects previous theoretical analyses. We determine phase diagrams for dipolar
ellipsoids and spherocylinders as a function of the aspect ratio of the particles and their dipole moment. In the
nonpolar limit the results for the phase boundary between the isotropic and nematic liquid-crystal phase agree
well with simulation data. Adding a longitudinal dipole moment favors the nematic phase. For oblate or
slightly elongated particles we find a ferromagnetic liquid phase, which has also been detected in computer
simulations of fluids consisting of spherical dipolar particles. The detailed structure of the phase diagram and
its evolution upon changing the aspect ratio are discussed in detail.@S1063-651X~97!09402-6#

PACS number~s!: 64.70.Md, 61.30.Cz, 77.80.2e,
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I. INTRODUCTION

There are two basic molecular properties that can ca
long-ranged orientational order in fluids. First, as has alre
been shown by Onsager@1#, particles of sufficientlyaniso-
tropic shape, e.g., long rods or flat disks, form a nemat
liquid-crystal phase at high densities. This phase transi
can be induced by purely steric interactions@2–4#. This has
been confirmed by computer simulations of hard ellipso
@5#, spherocylinders@6–9#, and cut spheres@10,11#, which
have become standard models of liquid crystals. Some
these systems exhibit further transitions to a smectic o
columnar liquid-crystal phase. Second, there is growing e
dence that a ferromagnetically ordered nematic phase ca
stabilized by dipolar interactions between spherical par
ticles, i.e., in the absence of anisotropic steric interactio
This phase has been observed in Monte Carlo simulation
dipolar soft@12,13# and hard@14–16# spheres as well as in
Stockmayer fluids@17#. It has also been analyzed by densit
functional theory@18–20#. Due to the long range of the di
polar interactions in this phase the equilibrium configurat
exhibits a spatially inhomogeneous magnetization@21#, simi-
lar to the domain formation in solid ferromagnets.

Molecules typically possess both a shape anisotropy a
permanent dipole moment. Therefore it is interesting to a
lyze the relative importance of these two properties with
spect to the formation of orientationally ordered phases
the crossover from a ferromagnetic to a purely nema
phase. To this end in the present work we study the mo
of dipolar hard ellipsoids and spherocylinders which co
the models of dipolar hard spheres as well as of nonp
elongated or oblate hard particles as limiting cases. Th
models have already been examined by Onsager’s virial
pansion@22#, integral equation theories@23#, and different
kinds of density-functional theory@24,25#. However, some
of these approaches@22,23,25# suffer from an incorrect treat
ment of the long-ranged dipolar forces and therefore fai
predict a ferromagnetic phase. In simulations of dipolar h
ellipsoids@26# and spherocylinders@27,28,14# and the dipo-
lar Gay-Berne model@29#, this phase has also not yet be
found, probably because the simulations were restricte
551063-651X/97/55~3!/2892~10!/$10.00
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large elongations of the particles which tend to destabi
the ferromagnetic order. Terentjevet al. @30# find theoretical
indications that a ferromagnetic phase might form mo
readily in dipolar liquid-crystalline polymers.

In the present work we examine the models mention
above by an alternative density-functional theory which i
generalization of the theory applied to Stockmayer fluids
Refs.@19–21#.

II. DENSITY-FUNCTIONAL THEORY

As motivated in the Introduction, we consider fluids co
sisting of hard particles which have a symmetry axis a
carry in their center a pointlike permanent dipole mome
aligned with this axis. The orientation of these uniaxial p
ticles with respect to spatially fixed coordinates is describ
by two angles (u,f)5v. The interaction pair potentia
w(r12,v,v8) is the sum of the hard core potential and t
dipolar potential:w5whc1wdip . The former is given by

whc~r12,v,v8!5H `, r 12<s~v12,v,v8!

0 otherwise,
~1!

wherer125r2r 8 is the center-to-center distance vector b
tween the two particles atr and r 8, respectively, and
s(v12,v,v8) is the distance of closest approach for giv
orientationsv, v8, andv12 of the particle axes and the vec
tor r12, respectively. The dipolar potential has the form

wdip~r12,v,v8!52
m2

r 12
3 @3@m̂~v!• r̂12#@m̂~v8!• r̂12#

2m̂~v!•m̂~v8!#

5
m2

r 12
3 w̃~v12,v,v8!. ~2!

In Eq. ~2! m(v) is the dipole vector andm is its absolute
value. The hats denote unit vectors.
2892 © 1997 The American Physical Society
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55 2893ORIENTATIONAL ORDER IN DIPOLAR FLUIDS . . .
A. Reference system of hard particles

We first analyze the reference system of the correspo
ing nonpolar hard core fluid. Its free energy as a functiona
the number densityr̂(r ,v) of particles atr with orientation
v can be written as

Fre f5Fid1Fex , ~3!

where the ideal gas part is given by~here and in the follow-
ing we use the notations*d3r5*Vd

3r and *dv5*S2dv,

whereV denotes the volume of the sample andS2 the unit
sphere!

bFid5E d3rdvr̂~r ,v!$ ln@4pr̂~r ,v!l3#21%, ~4!

l being the thermal wavelength. The excess part of the
energy is related to the direct correlation functi
c(r ,r 8,v,v8;@ r̂#):

2
1

kBT

d2Fex@ r̂#

dr̂~r ,v!dr̂~r 8,v8!
5c~r ,r 8,v,v8;@ r̂# !. ~5!

Equation~5! can be integrated twice along a linear path
density space starting from a zero density state yielding@31#

bFex52E d3rdvd3r 8dv8

3E
0

1

dl~12l!c~r ,r 8,v,v8;@lr̂#!

3 r̂~r ,v!r̂~r 8,v8!. ~6!

Due to the absence of exact results in order to proceed
now needs an approximation for the direct correlation fu
tion. An educated guess, which renders a computation
simple approach but nevertheless yields reliable results
the isotropic-nematic transition of nonpolar hard particles
given by the decoupling approximation introduced by Py
@32#, which assumes that this anisotropic function can
obtained from a dimensionless functionc0(x;h) by a suit-
able anisotropic rescaling with the distance of closest
proach:

c~r ,r 8,v,v8;@ r̂# !'c0„r 12/s~v12,v,v8!;h…. ~7!

Hereh5rv (0) is the packing fraction of the particles with a
individual volume v (0) and r5(1/4pV)*d3rdvr̂(r ,v) is
the mean number density. In this work we confine oursel
to spatially homogeneous phases so thatr̂(r ,v)5ra(v)
with the normalized orientational distributiona(v);
*dva(v)51. This implies that we do not consider smec
or solid phases and that in the case of ferromagnetic o
the sample shape is taken to be needlelike, which suppre
the formation of domains@21#. With these assumptions an
approximations Eq.~6! reduces to

bFex

V
5r2f 0~h!E dvdv8dv12a~v!a~v8!s3~v12,v,v8!.

~8!
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The functionc0 enters only in the integrated form

f 0~h!52E
0

`

dxx2E
0

1

dl~12l!c0~x;lh!. ~9!

If the Percus-Yevick direct correlation function@33# was
used forc0 one would end up with the Percus-Yevick resu
for the free energy in the special case of hard spheres@for
which obviously a(v)51/(4p)#. Instead, in accordanc
with Lee @34,35#, we choose

f 0~h!5
1

24

423h

~12h!2
, ~10!

which follows from the requirement that Eq.~8! yields the
Carnahan-Starling expression@36# for the free energy of hard
spheres, which is known to be more accurate at high de
ties. Note thatf 0(h) does not depend on the shape of t
particles which enters Eq.~8! only via the distance
s(v12,v,v8) of closest approach.

In view of the molecular symmetry the orientational di
tribution a(v) is expected to be axially symmetric so tha

2pa~v!5ā~cosu!5(
l50

`

a lPl~cosu!; ~11!

Pl(x) are the Legendre polynomials. The excluded volu
for fixed orientationsv andv8 is given by

vexcl~v,v8!5vexcl~cosg!5
1

3E dv12s
3~v12,v,v8!

5(
l50

`

v lPl~cosg!, ~12!

where g denotes the angle between the directionsv and
v8. Insertion of the expansions Eqs.~11! and ~12! into Eq.
~8! leads to

bFex

V
53r2f 0~h!(

l50

` S 2

2l11D
2

v la l
2 . ~13!

As mentioned above, this expression reduces to
Carnahan-Starling formula in the case of hard spheres.
the other hand, in the limith→0 one recovers the first two
terms of the virial expansion used by Onsager@1#. This limit
is especially helpful for very elongated particles for whi
the isotropic-nematic transition occurs at very low packi
fractions.

B. Dipolar interaction

The dipolar contribution to the free energy is treated
the so-called modified mean-field approximation@37–39#,

Fdip52
r2

2bE d3rdvd3r 8dv8a~v!a~v8!

3Q„r 122s~v12,v,v8!…f dip~r12,v,v8!, ~14!

with the Mayer functionf dip5exp(2bwdip)21 which is cut
off at contact through the Heaviside functionQ„r12
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2894 55B. GROH AND S. DIETRICH
2s(v12,v,v8)…. This expression follows@38# from using
the low-density approximationg'exp(2bw) for the pair
distribution function. The Mayer function can be expand
as

f dip~r12,v,v8!5 (
n51

`
1

n! S 2bm2

r 12
3 D nw̃ n~v12,v,v8!.

~15!

Due to the slow decay as function ofr 12 the first term in this
series requires particular attention. For this so-calledlong-
rangedterm,

Fdip
~LR!5

1

2
r2E dvdv8a~v!a~v8!E d3rd3r 8

3Q„r 122s~v12,v,v8!…wdip~r12,v,v8!, ~16!

the spatial integrations have to be analyzed carefully by
considering a fluid confined to a finite volumeV and then
performing the thermodynamic limit for a fixed shape of th
volume. As has been shown in Ref.@20# the result does de
pend on the shape of the sample. For an ellipsoidal volu
of aspect ratiok it was found that

Fdip
~LR!

V
5
8p

9
r2m2a1

2
„D~k!21/3… ~ for spherical particles!,

~17!

whereD(k) is the demagnetization factor@see Eqs.~3.22!
and~3.24! in Ref. @20##. For nonspherical particles the spati
integrations can be separated into contributions w
r 12<Rc and r 12>Rc , whereRc is a fixed distance large
than the maximum ofs(v12,v,v8). Since the result in Eq
~17! does not depend on the particle size it can be adop
for the latter contribution (r 12>Rc). The remaining integra
(r 12<Rc) can easily be evaluated since in this case the k
nel is effectively short-ranged as function ofr 12, yielding

Fdip
~LR!

V
5
8p

9
r2m2a1

2
„D~k!21/3…

1
r2

2bE dvdv8a~v!a~v8!q~LR!~cosg! ~18!

with

q~LR!~cosg!5bm2E dv12w̃ ~v12,v,v8!ln
Rc

s~v12,v,v8!

5(
l50

`

ql
~LR!Pl~cosg!. ~19!

@As it should beq(LR) does not depend on the arbitrary p
rameterRc due to*dv12w̃ (v12,v,v8)50.# As mentioned
above here we consider only the limit of an infinitely lon
and thin sample (k→`) for which D(k)50. For other
sample shapes the equilibrium configuration of a ferrom
netic fluid, i.e., with a1Þ0, exhibits an inhomogeneou
structure with a spatially varying axis of preferential orie
tation, analogouus to the domain formation in solid fer
d
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magnets. It was shown in Ref.@21# that if this effect is taken
into account the free energy is independent of the sam
shape~see also Ref.@40#! and has the same value as for
spatially homogeneous liquid in the limitk→` and thus the
same phase diagram. The other terms in Eq.~14!, i.e., the
short-rangedcontributions, can be written in the form

Fdip
~SR!

V
5

r2

2bE dvdv8a~v!a~v8!q~SR!~cosg! ~20!

with

q~SR!~cosg!5E dv12(
n52

`
~21!n11

3~n21!n!

~bm2!n

s3n23~v12,v,v8!

3 w̃ n~v12,v,v8!. ~21!

With the definition

ql5
2l11

2 E
21

1

d~cosg!Pl~cosg!@q~LR!~cosg!1q~SR!~cosg!#

2d l ,1
4p

3
bm2 ~22!

@D(k5`)50# one finally has

bFdip

V
5
1

2
r2(

l50

` S 2

2l11D
2

qla l
2 . ~23!

C. Total free energy and phase coexistence

Since Eq.~23! has the same form as Eq.~13! we can write
the total free energy as in Ref.@20#:

F

V
5

r

b
@ ln~rl3!21#1

r

bE21

1

dxā~x!ln@2ā~x!#

1r2(
l50

`

ula l
2 ~24!

with ~now density-dependent! coefficients

bul5S 2

2l11D
2F3 f 0~h!v l1

1

2
ql G . ~25!

If the summation overl is truncated atl5L ~in practice it
turned out thatL54 is sufficient to yield reliable results! the
minimization with respect to the orientational distributio
leads to

ā~x!;expS 2rb(
i51

L

~] i11!uia iPi~x!D ~26!

so that@see Eq.~5.6! in Ref. @20##
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55 2895ORIENTATIONAL ORDER IN DIPOLAR FLUIDS . . .
a l5
2l11

2

E
21

1

dxPl~x!expS 2rb(
i51

L

~2i11!uia iPi~x!D
E

21

1

dxexpS 2rb(
i51

L

~2i11!uia iPi~x!D .

~27!

The phase diagrams follow from requiring the equality
the chemical potentials and the pressures at the coexis
densitiesr1 andr2:

]F

]r Ur1 ,ā
~1!~x!5

]F

]r U
r2 ,ā

~2!~x!

,

F„r1 ,ā
~1!~x!…2r1

]F

]r Ur1 ,ā
~1!~x!

5F„r2 ,ā
~2!~x!…2r2

]F

]r U
r2 ,ā

~2!~x!

. ~28!

The functionsā ( i )(x) denote the corresponding equilibriu
orientational distributions obtained from Eqs.~26! and ~27!.
As discussed above, three kinds of phases are consid
isotropic liquid ~or gas! @ā(x)51/2#, nematic liquid
@ā(x)5ā(2x), i.e., a l50 for odd l #, and ferromagnetic
liquid (a lÞ0 for all l ). ~The latter phase could also be calle
ferromagnetic nematic, but we do not use this phrase in o
to avoid confusion.!

The determination of the phase boundaries forsecond or-
der phase transitions is presented in the Appendix. Note
due to symmetry reasons there can be no truly second-o
isotropic-nematic transition@41#.

We now discuss the calculation of the coefficientsv l and
ql for the two types of particles we are interested in, i.e., h
spherocylinders and hard ellipsoids. A spherocylinder c
sists of a cylinder of lengthL and diameterD with two
hemispherical caps of the same diameterD. The excluded
volume is given by~see, e.g., Ref.@22#!

vexcl~cosg!52DL2sing12pD2L1
4p

3
D3 ~29!

which leads to

v05
p

2
DL212pD2L1

4p

3
D3,

v252
5p

16
DL2, v452

9p

128
DL2. ~30!

~Higher-order terms are neglected.! The odd coefficients van
ish due to the presence of the symmetry plane of the~non-
polar! particles. In order to determine the coefficientsql one
needs the functions(v12,v,v8). It can be inferred from the
observation that the surface of a spherocylinder is the se
all points with distanceD/2 from the line segment connec
ing the centers of the caps. Thus when two spherocylind
are in contact these line segments always have the dist
D from each other. It is difficult to give a closed formula fo
s(v12,v,v8) because several cases have to be dis
f
ng

ed:
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guished. Nonetheless a numerical code for the calculatio
this function can easily be implemented. An algorithm f
the closely related problem of the distance between
spherocylinders with given positions and orientations h
been derived explicitly by Allenet al. @4#.

For hard ellipsoids with two equal axes of lengths' and
one axis of lengths i Berne and Pechukas@42# introduced
the often used approximation@31#

s~v12,v,v8!

5s'F12x
cos2u1cos2u822xcosucosu8cosg

12x2cos2g G21/2

~31!

whereg, u, andu8 are the angles between the directionsv
andv8, v andv12, andv8 andv12, respectively, and

x5
s i
22s'

2

s i
21s'

25
k221

k211
; ~32!

k5s i /s' . This approximation is obtained by considerin
the overlap of two ellipsoidal Gauss distributions. From E
~31! one finds

vexcl~cosg!5
4p

3
s is'

2 S 12x2cos2g

12x2 D 1/2. ~33!

These formulas enable one to determine the coefficientv l
analytically andql numerically. We have truncated the su
in Eq. ~21! at n530 and found no significant changes up
including further terms for all considered values of the p
rametersbm, s i /s' , andD/L.

III. DISCUSSION OF THE PHASE DIAGRAMS

A. Nonpolar ellipsoids

Figure 1 displays the phase diagram fornonpolar hard
ellipsoids with aspect ratiok5s i /s' . The solid lines de-
note the coexistence densities of the isotropic and the n
atic fluid as determined from the theory presented in Sec
They are in fair agreement with the results of Monte Ca
simulations~squares! @5#. The two-phase region is alway
very narrow, as in real nematic liquid crystals. The triang
indicate the liquid-solid transition found in the simulation
which cannot be described by the present theory.~The de-
scription of the solid phase requires a weighted-dens
functional theory @43#.! For aspect ratios neark51 the
isotropic-nematic transition is preempted by freezing. With
the approximation in Eq.~31! the physical properties ar
invariant under the transformationk→1/k. This behavior is
satisfied very well by the simulation results, too.

B. Polar ellipsoids

In this section we discuss the case that the hard ellips
are endowed with a point dipole of strengthm oriented along
the symmetry axis of lengths i . In the following we use the
dimensionless reduced temperatureT*5kBTs'

3 /m2 and the
volume fractionh5rv (0) wherev (0)5(p/6)s'

2s i is the mo-
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2896 55B. GROH AND S. DIETRICH
lecular volume. The nonpolar case~see Sec. III A and Fig. 1!
corresponds to the limitT*→`. For k53 ~Fig. 2! the first-
order isotropic-nematic transition is shifted to lower densit
upon lowering the temperature. BelowT*'0.2 the density
gap increases dramatically and evolves into a broad coe
ence region between an isotropic gas and a nematic liq
Thus in this fluid gas-liquid coexistence is not terminated
a critical point. Forh>0.265 lowering the temperature lead
to two phase transitions~isotropic fluid→nematic fluid and
nematic fluid→gas-liquid! whereas forh<0.265 there is
only the gas-liquid transition. As shown in Fig. 3 fork52 a

FIG. 1. Phase diagram of nonpolar hard ellipsoids with t
equal axes of lengths' and one axis of lengths i and an aspec
ratio k5s i /s' . h5rv (0) is the volume fraction wherer is the
number density of the particles andv (0) is their individual volume.
The lines denote the coexisting volume fractions at the first-or
isotropic-nematic transition as obtained from density-functio
theory. The squares and triangles are simulation results
isotropic-nematic and liquid-solid coexistence, respectively. For
former there is good agreement with density-functional theory.
dotted lines are guides for the eye. The isotropic-nematic trans
is accompanied by only a small density discontinuity which d
creases fork→1. The present density-functional theory is n
suited to describe the freezing transition. The simulation data s
port the symmetryk↔1/k discussed in the text.

FIG. 2. Phase diagram of dipolar hard ellipsoids with asp
ratio k53 in the temperature-density plane. The weakly first-or
isotropic-nematic transition at high temperatures broadens into
nematic coexistence at low temperatures. Here and in the follow
figures two-phase coexistence regions are shaded.
s

st-
id.
y

ferromagnetic liquid appears in the medium-temperat
range. This phase turns into a purely nematic phase along
dotted lines of critical points. Whether the disappearence
the ferromagnetic order at low temperatures is an artefac
the approximations or not needs to be checked by alterna
techniques. The behavior of the order parametersa l along
different thermodynamic paths is displayed in Figs. 4 and
Figure 4 illustrates their density dependence along two
therms. ForT*51.3 the ferromagnetic order parametera1
vanishes at the critical density with a square root singula
in accordance with the presently used mean-field the
while the nematic order parametera2 exhibits a small break
of slope not visible on the scale of the figure. At a low

r
l
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g

FIG. 3. The same as in Fig. 2 but fork52. Besides the isotropic
(I ) and nematic (N) phases a ferromagnetically ordered liqu
(F) occurs in the intermediate temperature range. The dotted
solid lines denote second- and first-order transitions, respectiv
The density gap of theI -N transition ath.0.68 cannot be resolved
on the present scale. The continuousF-N transition at low tempera-
tures intersects the first-order transitions at a critical end point.
inset shows that in a narrow temperature range the high-temper
continuousN-F transition is turned into a weakly first-order trans
tion generating a tricritical point and anI -N-F triple point. The
two-phase coexistence regions are shaded. For reasons of c
this shading is omitted forI -F coexistence.

FIG. 4. The first two orientational order parametersa l @see Eq.
~11!# along two isotherms in Fig. 3 fork52. The gaps between th
black dots indicate two-phase regions. The dotted vertical lines
dicate discontinuities.
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55 2897ORIENTATIONAL ORDER IN DIPOLAR FLUIDS . . .
density a2 vanishes discontinuously at the first-ord
nematic-isotropic transition. For the lower temperatu
T*50.6 the ferromagnetic phase transforms directly into
isotropic phase. Figure 5 shows the order parameters as f
tion of T* at the fixed densityh50.75 demonstrating the
loss of the ferromagnetic order at low temperatures. In
intermediate ferromagnetic region the orientational distri
tion ā(cosu) typically exhibits two maxima atu50 and
u5p with the higher one determining the sign of the spo
taneous magnetization. Their heights become equal at
nematic-ferromagnetic transition. In contrast to Baus a
Colot @24#, who use a different density-functional theory, w
do not observe a phase transition between phases with
and two maxima in the orientational distribution.

Upon further lowering the aspect ratio~Fig. 6! another
qualitative change of the phase diagram occurs: for inter
diate densities the isotropic-ferromagnetic transition
comes continuous. Two tricritical points arise where t
character of this transition changes from first to second or
We remark that for high temperatures the ordered pha
occur only at such high densities that they will certainly
preempted by a solid phase, which is not captured by
present form of the density functional.

Finally, in Fig. 7 we present the phase diagram for dipo
hard spheresobtained from the present density-function
theory. There is no gas-liquid transition between isotro
fluids, but a coexistence of an isotropic gas with a ferrom
netic liquid which at a tricritical point (Tt* ,h t)
5(0.600,0.198) changes into a continuous transition. As
the Stockmayer fluid@20# the stability of the ferromagnetic
phase is considerably overestimated as compared with s
lations @14,15#, in which the isotropic-ferromagnetic trans
tion has been detected atT*50.16 andh'0.4.

For oblate particles (k,1) we obtain a similar series o
phase diagrams~Figs. 8 and 9! as fork.1 but without the
loss of ferromagnetic order and the reentrance of the nem
phase at low temperatures. The comparison between Fig

FIG. 5. Temperature dependence of the first four orientatio
order parametersa l along a thermodynamic path of fixed density
Fig. 3 for k52. The order parameters with odd indicesl vanish in
the low- and high-temperature nematic phases but are nonzer
tween the lower critical pointTc1* 50.226 and the upper critica
point Tc2* 51.34 corresponding to ferromagnetic order.a2 anda4

are nonzero for all temperatures and decrease for increasing
perature. AtTc1* andTc2* they exhibit a break of slope.
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and 6 and between Figs. 9 and 2 shows that the formatio
the ferromagnetic phase is favored by oblate particles
compared with elongated ones. This is confirmed in Fig.
which displays the phase diagram in the (k,h) plane for a
fixed value of the squared dipole moment perkBT normal-
ized to the particle volume:bm2/v (0)56/p. The isotropic-
ferromagnetic critical density increases with increasing elo
gations. An intuitive explanation for this observation
provided by an examination of the lowest energy configu
tion of two dipolar particles. The interaction energy at co
tact of a nose-to-tail arrangement is22m2/(ks')

3 while
that of an antiparallel side-by-side arrangement is2m2/s'

3

Obviously the former configuration becomes more favora
as compared with the latter one ifk is decreased implying a
stronger tendency for long-ranged ferromagnetic order.
large elongations the orientationally ordered phase beco
nematic, while this does not happen for very oblate particl
for which instead a gas-ferromagnetic coexistence occur

al

be-

m-

FIG. 6. Phase diagram of dipolar hard ellipsoids fork51.5. The
line styles have the same meaning as in Fig. 3. In the hi
temperature region the gap between the two coexisting dens
cannot be resolved on the scale of the figure so that only a sin
solid line is visible. Between two tricritical points the isotropic
ferromagnetic transition is continuous. The two-phase coexiste
region at low temperatures is shaded.

FIG. 7. Phase diagram of dipolar hard spheres. Within
present approximation only one isotropic fluid and a ferromagne
liquid are stable at any temperature. Below~above! the tricritical
point the phase transition is discontinuous~continuous!.
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the temperature considered. Thus thek↔1/k symmetry of
Fig. 1 is lost in Fig. 10 as a result of the additional dipo
forces.

C. Dipolar spherocylinders

For dipolarspherocylindersone finds the same series
phase diagrams as function of the aspect ratioL/D as for
elongated ellipsoids. An example is given in Fig. 11~com-
pare Fig. 3!. As for the nonpolar ellipsoids the location of th
isotropic-nematic transition form50 agrees very well with
corresponding simulation results@6,8#, which are available
only for L/D55.

D. Comparison with previous results

In the following we compare our results with other the
retical investigations and numerical simulations of dipo
hard core particles. Baus and Colot@24# have studied this
problem with a different density-functional ansatz which u
lizes the analytically known correlation function of dipol
hard spheres in the mean-spherical approximation. At h
temperatures they also find the sequence of isotropic, n

FIG. 8. Phase diagram of oblate dipolar ellipsoids w
k52/3. The meaning of the solid and dotted lines is the same a
Fig. 3. In contrast to Fig. 6, there is no reentrant nematic phas
low temperatures.

FIG. 9. Phase diagram for oblate dipolar ellipsoids w
k51/3. See also the caption to Fig. 3.
r

r

h
m-

atic, and ferromagnetic phases in accordance with our
sults, followed by a transition to a second ferromagne
phase~see the end of the first paragraph in Sec. III B!. How-
ever, they claim that an increase of the aspect ratio shifts
ferromagnetic phase to lower densities and higher temp
tures in contrast to our findings and to the qualitative ar
ment presented at the end of Sec. III B.

The familiar second-order virial expansion of Onsager@1#
has been applied to dipolar spherocylinders by Vanaka
and Photinos@22#. It is well known that this approximation
deteriorates for decreasing aspect ratios@34#, which is the
reason that forL/D55 andm50 these authors find the
isotropic-nematic transition at densities above the density
closest packing. In addition, they do not treat the long-ran
dipolar interactions correctly which leads them to the wro
conclusion that a ferromagnetic phase cannot be stable
any dipole moment or aspect ratio. They agree with our
sults in that an increase ofm or a decrease ofT lowers the

in
at

FIG. 10. Phase diagram of hard ellipsoids for a fixed redu
dipole moment in units ofkBT and the particle volumev (0). The
stability of the ferromagnetic phase decreases with increasing
pect ratiok until it finally turns into a nematic phase at high de
sities and into an isotropic fluid at low densities. Coexistence of
isotropic gas and the ferromagnetic liquid occurs for oblate p
ticles. There is nok↔1/k symmetry as in Fig. 1 due to the pres
ence of the dipolar interactions.

FIG. 11. The phase diagram for polar spherocylinders with
aspect ratioD/L51 exhibits a similar behavior as that for pola
ellipsoids withk52 ~see Fig. 3!.
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isotropic-nematic coexistence densities for point dipoles
cated in the center of the hard particles. However, as t
point out, this trend is reversed if the point dipoles are
cated off center near the ends of the particles.

The correlation functions obtained from the hypernett
chain integral equation theory have been used by Perera
Patey @23# for the investigation of dipolar hard ellipsoids
For k53 they find transition densities which are about 20
lower than the ones presented here and the same behav
these densities upon increasing the dipolar strength. H
ever, fork51/3 these authors were able to obtain a solut
of the integral equation only for rather small dipole m
ments. They, too, did not take into account the correct lo
ranged contribution to the free energy and did not dete
ferromagnetic phase for the aspect ratios under consi
ation. However, in a subsequent publication@18# they state
that this conclusion remains unaltered if this fault is c
rected.

Vega and Lago@25# have used a density-functional theo
similar to the present one, but they incorporate a more
phisticated equation of state for the nonpolar isotropic fl
and treat the dipolar interactions within perturbation theo
The same remark as above concerning the treatment o
long-ranged interaction applies also to their work. Their
sults for the isotropic-nematic coexistence densities of di
lar hard spherocylinders with aspect ratioL/D55 are in fair
agreement with our findings forbm2/D3 between 0 and 4
However, they were unable to find a solution for the orie
tational distribution function forbm2/D356, which is close
to the parameter range where within our approximation
isotropic-nematic transition broadens into a gas-nematic
existence.

Weis, Levesque, and Zarragoicoechea@27,28,14# have
performed Monte Carlo simulations of dipolar spherocyl
ders withL/D55 for centered and off-centered dipole m
ments forming different angles with the cylinder axis. The
authors were mainly interested in the structure of the sme
phase and did not determine the isotropic-nematic transi
point. For (bm2/D3)1/252.449 and a longitudinal centere
dipole moment they report@27# the occurrence of anisotro-
pic state ath50.356 and anematicstate ath50.441, which
is in accordance with the coexistence densitiesh I50.356
andhN50.375 obtained from the present theory. These
thors have also studied ellipsoids withk53 @26# and found
no isotropic-nematic transition for values of (bm2/s'

3 )1/2 in
the range between 0 and 3, in contrast to our results show
Fig. 2. Form50 this finding is also at variance with Frenk
and Mulder’s results@5#, who did observe an isotropic
nematic transition withh I50.507 andhN50.517. We con-
clude that further simulations of the isotropic-nematic
possibly the isotropic-ferromagnetic transition for differe
aspect ratios would certainly be helpful.

Recently, McGrother and Jackson@44# have published an
extensive Monte Carlo study of the liquid-vapor coexisten
in a dipolar hard spherocylinder fluid. In agreement w
previous work@45,17# they find that there is no liquid-vapo
coexistence in the spherical limitL/D→0 as well as for very
elongated particlesL/D@1 due to the formation of chains o
nose-to-tail~small L/D) or side-by-side~largeL/D) aggre-
gated particles~see also Ref.@46#!. Only in an intermediate
range aroundL/D50.25 phase separation into isotropic g
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and liquid does occur. This chain formation is not captur
correctly by the present theory, which predicts ga
ferromagnetic or gas-nematic coexistence for all values
L/D.

IV. SUMMARY

By applying density-functional theory for the descriptio
of orientational order in dipolar fluids consisting of hard no
spherical particles we have obtained the following main
sults.

~1! The location of the isotropic-nematic transition
nonpolar hard particles as a function of the aspect ratio
been obtained in good agreement with other theories
simulation results~Fig. 1!.

~2! The addition of a longitudinal point dipole at the ce
ters of the particles induces a decrease of the coexisting
sities of the isotropic-nematic transition and it leads to g
nematic coexistence for large values of the dipole momen
at low temperatures~Fig. 2!.

~3! There is also a ferromagnetic liquid phase provid
the particles are not too elongated and the dipole momen
sufficiently strong. This phase is reached from the nemati
isotropic states by continuous or weakly first-order tran
tions, depending on the temperature and the particle as
ratio.

~4! In accordance with the mean-field character
density-functional theory, at the continuous phase transiti
~Curie points! the magnetization vanishes according to
square root power law and the nematic order parameter
hibits a small break of slope~Figs. 4 and 5!.

~5! Within the present theory the phase diagram of dipo
hard spheres~Fig. 7! comprises an isotropic and a ferroma
netic fluid with first-~second-! order phase transitions at tem
peratures below~above! a tricritical point.

~6! Oblate particles exhibit a similar phase behavior
elongated ones, but a stronger tendency for the formatio
the ferromagnetic phase. In contrast to the nonpolar case
phase diagrams are not approximately symmetric with
spect to the transformationk↔1/k, wherek is the aspect
ratio of the uniaxial ellipsoidal particles~Fig. 10!.

~7! For dipolar hard spherocylinders we find an analogo
series of phase diagrams as for elongated ellipsoids.

APPENDIX: CRITICAL DENSITIES

We rewrite these contributions to the free energy in E
~24! which depend on the orientational distribution as~here
and in the following all integrals overx and x8 are to be
taken over the interval@21,1#)

DF

V
5

r

bE dxā~x!ln@2ā~x!#

1
1

2
rE dxdx8ā~x!ā~x8!K~x,x8! ~A1!

with

K~x,x8!5(
l51

L
~2l11!2

2
ulPl~x!Pl~x8!. ~A2!
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Following van Roijet al. @47# we use a kind of bifurcation
analysis in order to determine the critical density of t
nematic-ferromagnetic or isotropic-ferromagnetic phase tr
sition for a given temperature. The minimization of Eq.~A1!
yields

ln@2ā~x!#1brE dx8ā~x8!K~x,x8!5n, ~A3!

where the Lagrange multipliern is determined by the nor
malization *dxā(x)51. One considers a small ferroma
netic perturbationā1(x) of a solutionā0(x) with nematic
symmetry, i.e., ā0(x)5ā0(2x). If the expansions
ā(x)5ā0(x)1eā1(x)1••• and n5n01en11••• are in-
serted into Eq.~A3! the term linear ine gives

ā1~x!

ā0~x!
1brE dx8ā1~x8!K~x,x8!5n1 . ~A4!

Integrating Eq. ~A4! over x and using the relation
*dxK(x,x8)50 yields

ā1~x!

ā0~x!
2
1

2E dx8
ā1~x8!

ā0~x8!
1brE dx8ā1~x8!K~x,x8!50.

~A5!

Since both ā0(x) and ā(x) must be of the form
exp@(l50

L glPl(x)# @see Eq.~26!#, with the nematic solution
ā0(x) containing only even indicesl , we make the following
ansatz for the small perturbation:

ā1~x!5ā0~x! (
n51

L/2

g2n21P2n21~x!, ~A6!

where terms of the orderg2n21g2m21 and higher due to the
exponential form~see above! have been neglected. Due
Eq. ~A5! the coefficientsg l with odd l satisfy the equation

g l1 (
l 851

L/2

All 8g l 850, ~A7!
sio
st

v.

re

m

n-

with

All 85
~2l11!2

2
brulE dxā0~x!Pl~x!Pl 8~x!. ~A8!

Both the nematic solutionā0(x) and theL/23L/2 matrix
A depend on the density. The critical density is reached
one of the eigenvalues ofA equals21 giving rise to a non-
trivial solution of Eq.~A7!. For L52 this condition reduces
to

9
2bru1E dxā0~x!x2521. ~A9!

For L54 one obtains after some algebra

11A111A331A11A332A13A3150. ~A10!

From these equations together with the numerical solution
Eq. ~27! the nematic-ferromagnetic critical density can
determined.

For the isotropic-ferromagnetic transition the unperturb
solution isā0(x)51/2 so that Eq.~A9! reduces to the known
result @see Eq.~7.10! in Ref. @20##

3
2 bru1521. ~A11!

In this case the matrixA is diagonal for generalL:
All 85(2l11)/2bruld l ,l 8. Thus the above bifurcation cond
tion yields

2l11

2
brul521. ~A12!

The actual values of the coefficientsul are such that the
lowest density for which Eq.~A12! is satisfied always corre
sponds tol51, so that Eq.~A11! is valid for all L.
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